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A Symmetrical Condensed Node for the
TLM Method

PETER B. JOHNS

Abstract — A new symmetrical condensed node is developed for the
analysis of electromagnetic waves by the transmission-line modeling (TLM)
method of numerical analysis. The new node has the advantage of con-
densing the field components to one point in space at the node and
removes the disadvantage of asymmetry in existing condensed nodes.

I. INTRODUCTION

RANSMISSION-LINE MODELING (TLM) pro-

vides a conceptual model which produces a time-
domain numerical technique for solving networks and
fields [1]. Electromagnetic fields are modeled by filling the
field space with a network of transmission lines which
renders the problem discrete in space and time since pulses
launched on the network scatter from point to point in
space in a fixed timestep. The theory and application of
TLM for electromagnetic simulation are reviewed in an
excellent paper by Hoefer [2], who also describes some of
the later developments.

The network of transmission lines shown in Fig. 1 for
modeling three-dimensional electromagnetic waves has
been developed by interconnecting two-dimensional shunt
and series nodes [3]. There is half a timestep delay between
these nodes, and for this reason the network is termed an
expanded-node network.

The expanded-node network has been used for a variety
of applications over many years [2]; it is similar to finite-
difference methods in the same way that the TLM method
in its application to diffusion is similar to finite differences
[4]. A numerical advantage of TLM over the method of
Yee [5], for example, is that three of the six field compo-
nents are available at each node (rather than one), thus
making boundary description finer and giving more infor-
mation at each node. Also, TLM is a one-step method,
whereas the finite-difference routine is a two-step method.
Conceptually, TLM has the advantage that it is a physical
model with an exact computer solution.

The outstanding disadvantage of the expanded-node
network and the finite-difference method is that the topol-
ogy of the network graph is quite complicated. The nodes,
where different field components are conveniently calcu-
lated, are spatially separated. In the finite-difference
method, for example, all six field components are sep-
arated [6]. This has made data preparation for the mod-
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eling of boundaries difficult and liable to error, and the
problem is particularly acute when automatic data prep-
aration schemes are implemented. The process of di-
akoptics for forming substructures [7], [8] is also difficult
to organize because of the half-timesteps and the spatial
separation of different polarizations [9].

This inconvenience of the expanded node network has
led to the development of a condensed-node structure by
Saguet and Pic [10]; this and other improvements in TLM
are described in an interesting paper by Saguet and Tedjini
[11]. The condensed node has also been evaluated and used
independently by Amer [12]. The node is shown in Fig. 2,
and it can be seen that the network topology is simply a
three-dimensional Cartesian mesh with two lines, corre-
sponding to two polarizations, in each branch. All of the
scattering processes take place at one point in space for the
node, all of the field components are also at one point in
space, and boundary conditions can be applied at the node
or halfway between nodes. However, it can also be seen
from Fig. 2 that the node is asymmetrical because, depend-
ing upon the direction of view, the first connection in the
node is either shunt or series. This asymmetry has been
carefully investigated by Amer [12], and it has been found
that in most problems the errors are insignificant. Never-
theless, it does mean that boundaries viewed in one direc-
tion have slightly different properties when viewed in
another, especially at high frequencies. The scattering pro-
cess for this node is obtained in the computer by first
calculating the six nodal quantities from the 12 incident
pulses and then calculating the 12 reflected pulses. Al-
though this procedure makes the scattering computation
efficient, it does involve quite lengthy arithmetic. Never-
theless, in spite of these disadvantages, it has been demon-
strated [10]-[12] that the asymmetrical condensed-node
technique uses less computer resources than the
expanded-node technique.

This paper takes yet another step and describes the
development of a symmetrical condensed node for trans-
mission-line modeling of electromagnetic waves. This node
eliminates the disadvantages of asymmetry and cumber-
some arithmetic in the asymmetrical node while preserving
the advantages of condensed-node working.

In this paper, a condensed node without stubs is first
considered. The absence of stubs means that extra induc-
tance and capacitance cannot be added locally to the node
and so the node represents only a cubic block of homoge-
neous space in a Cartesian mesh. The paper then gives the
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Fig. 1. The expanded node.

scattering matrix for the node with stubs. This allows the
node to be used in inhomogeneous problems and in prob-
lems described by a completely general orthogonal mesh.
The output and excitation properties of the node with
stubs are considered and a simple propagation analysis is
given for waves propagating in two different directions.

II. THE SYMMETRICAL CONDENSED NODE
WITHOUT STUBS

Hitherto, the method for obtaining the scattering matrix
for a node in a transmission-line graph has been to repre-
sent the node by an equivalent electrical circuit obtained
by replacing transmission-line and incident pulses by
Thevenin equivalent circuits. In developing the symmetri-
cal condensed node, it is necessary to make a break with
this tradition since the node can no longer be represented
by a lumped circuit.

The proposed node without stubs is depicted in Fig. 3. It
is convenient to preserve the idea of two-wire transmission
lines, and these are shown for convenience on the sides of
what can be imagined as square ducts made of insulating
material. The two polarizations in any direction of propa-
gation are carried on two pairs of transmission lines which
do not couple with each other. In the expanded mesh,
these two transmission lines are totally separated in space.

The 12 transmission.lines all have the same characteris-
tic impedance, which also equals the characteristic imped-
ance of free space, Z,. These lines link the Cartesian mesh
of nodes together and are termed link transmission lines.
Twelve pulses on the link transmission lines, incident upon
the node, produce scattering into 12 reflected pulses. The
incident and reflected pulses appear on the terminals of
the transmission lines at ports which are numbered and
directed according to the voltages shown in Fig. 3.

Let the scattering be defined by
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Fig. 3. The symmetrical condensed node.
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where S is a 12X 12 matrix with elements S, , in the mth
row and nth column.

Suppose that a voltage pulse 7y of unit amplitude is
incident upon port 1 of the structure in Fig. 3. The pulse
proceeding toward the junction has associated with it the
field quantities E, and H,. One of Maxwell’s equations
involving coupling between these two fields is

dH, JH, dE,
dy ‘

dz atr (1)
" This equation requires that the pulse incident on port 1
scatter into ports 1, 2, 9, and 12 since E, and H, are also
associated with port 12 on a y-directed line, and E, and
H, are associated with ports 2 and 9 on z-directed lines.
Let the amplitudes of the pulses scattered into ports 1 and
12 be a and e, respectively. If a symmetrical node exists,
then the pulses scattered into ports 2 and 9 must be equal,
and the variable b is assigned to these.

The other equation of Maxwell’s involving E, and H, is

dE, OE dH,
- - )

X V4
dx

dy atr

This means that pulses are also scattered into ports 3
and 11, and if the symmetrical node exists, these will be
equal and opposite in sign. The variable d is assigned to
the pulse scattered into port 3 and — 4 to the one into
port 11.

If the same procedure is applied to all ports, then the
scattering matrix § may be written as
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and the problem now is to determine the values of a, b, ¢,
and d.
Let the node represent a block of space of dimensions u,
v, and w, as shown in Fig. 4 and let the total capacitance
associated with transmission lines 1, 2, 9, and 12 be C,,
where
wo
C =e—.

x
u

(3)

Let the fields associated with these lines be

E,=V./u
H,=1,/v
Hy=—1,/w (4)

where V, is the voltage drop across the transmission lines
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Fig. 4. Representation of space by the condensed node.

in the x direction. I, and I, are currents circulating in
transmission lines in the y and z directions, respectively,
and are mesh currents or common currents [13].

Let I, I,, I, and I}, be the currents entering ports 1,
2, 9, and 12, respectively. Then the discrete form of (1)

becomes

Lo+l I+l CudV,

wo wo wo dt u
0 0 b 0 -—-d c
0 0 ¢ —d 0 b
0 b 0 0 ¢c —d
—d ¢ 0 0 b 0
c —-d 0 b 0 0
b 0 -—d ¢ 0 0
a d 0 b 0 0
d a 0 0 b 0
0 0 a d 0 b
b 0 d a 0 0
0 b 0 0 a d
0 0 b 0 d a |
ie.,

(5)

Equation (5) indicates that the only loss of current
entering the four ports must be due to the rate of change
of voltage across the capacitance of the transmission lines
and there must be no loss of current at the node.

The scattering matrix could be expressed in terms of
voltages, currents, field quantities, or a combination of
these. Historically, the voltage has been used, and it is
convenient to continue with this convention. Thus, in
terms of voltage pulses on link lines of equal characteristic
impedance, the conservation of current at the node re-
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quires that
l—a=2b+c.

(6)

Referring again to Figs. 3 and 4, the inductance associ-
ated with transmission lines 1, 3, 11, and 12 is L,, where

u
L=p— (7)
w
and the associated fields are
E,=V./u
E,=V,/v
and
H,=I/w.
I 11
1
1 1
1 1
1 1
_1 1 1
S= 3 1
1 -1
1
-1 1
-1 1
L 1 -1

Here, 1, is the mesh current or common current associated
with the four transmission lines. Note that the method of
solution of the transmission-line structure uses pulses, this
forces the currents on each of the two individual wires of
each transmission line to be equal and opposite, which
automatically sets to zero the type-W mesh currents dis-
cussed in [13].

Let V}, V5, V14, and V7, be the voltages across ports 1, 3,
11, and 12, respectively. Then the discrete form of (2) is

Vu_Vz_(Vu_Vl): iiI_A
w uv Zup 9t w
ie.,
oI,
I/3+V12_V11‘V1=Lza_t- (8)

Equation (8) indicates that the only loss of voltage
across the four ports must be due to the rate of change of
current in the inductance of the transmission lines and
there must be no loss of voltage at the node. Thus,

1+a=2d+c.

(9)

For loss-free propagation of waves, the node must con-
serve energy under all combinations of incident pulse
excitation, and this leads to the requirement that the
scattering matrix be a unitary matrix [14], i.e.,

S§=1.
Thus,

r=s

LSS =
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and

E nr ns

which gives the following equations:
a’+2b*+c*+2d4% =1
2ab+2bc=0
2ad —2cd =0 (12)
2ac+2b*—2d*=0. (13)

It is interesting to find that (10)~(13) do have a solution
and this solution also satisfies (6)—(9). It is

r# s

(10)
(11)

a=0 ¢=0 b=4% d=3.
The scattering matrix becomes
1 -1 ]
1 -1 1
1 -1
-1 1
1 -1 1
1 -1
1 1 1 (14)
1 1
-1 1 1
1 1
1 1
1 1 ]

which is a remarkably simple and satisfying result.

IIL

The node with stubs has six extra ports. Ports 1-12 are
exactly the same as for the node without stubs and are
connected to neighboring nodes to form the mesh. The
stub ports 13, 14, 15, 16, 17, and 18 couple only with the
fields E,, E, E,, H,, H, and H,, respectively. The
E-field stub ports are open circuit and add capacitance to
the node, while the H-field stub ports are short circuit and
add inductance to the node. The time taken for a pulse to
travel from the port terminals to the center of the node.
where scattering takes place is Az /2 for all transmission-
line legs 1-18, where At is the TLM timestep.

Let Y, be the characteristic admittance of the E, stub
normalized to the characteristic admittance of free space
(Yy)- Let L, and C, be the distributed inductance and
capacitance (i.e., the inductance and capacitance of the
stub per unit length) and let the length of the stub be
Al /2. The capacitance of the E, stub is then given by

THE SYMMETRICAL CONDENSED NODE WITH STUBS

o=l
$X d ) d2 ,110_6(: °
Also,
\/Td \/7 and — = !
L, \/LdCd Jioko
C,=Y¢,
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C

sx

At

YOYx—z—. (15)

A similar analysis can be made for all of the transmis-
sion-line legs and the results are summarized in Table I.

The scattering matrix is found by extension of the
principles of the previous section. Since, by definition, the
voltage pulse incident on port 13 only couples with the £
field, it will scatter into ports 1, 2, 9, and 12. This ampli-
tude is taken to be e, and the amplitude scattered back
into itself is taken to be k. Also, pulses incident on ports 1,
2, 9, and 12 will couple into port 13, and this amplitude is
taken to be g. All these variables will be associated with
Y, the characteristic admittance of the E, stub on port 13.
Pulses incident on ports 3, 4, 8, 11, and 14 will have similar
variables associated with Y, and pulses incident on ports
5, 6, 7, 10, and 15 are associated with Y,. Similar argu-
ments apply to the inductance stubs on ports 16, 17, and
18.

The scattering equation

Vr=8y (16)

for the node with stubs now contains an 18 X 18 scattering
matrix which takes the following form. The association of
the rows and columns with the particular Y and Z param-
eters is indicated.

Column No. 1 2 3 4 6 7
Associateds/cStub  (Y) x x y y z z z
Associated o/cStub  (Z) z y z x y

1 x zla b d
2 x y|b a d
3 vy z1|d a b
4 y x b a d -d
5 z x d a b ¢
6 z y d b a b
7 z x —-d c b a
8§ vy x b ¢ —d d
9 x yib ¢ -
10 z y ~d b ¢ b
11 y z|-d ¢ b
12 x z|c¢c b ~d
13 x e e
14 y e e
15 =z e e e
16 X f —7f f
17 y —-f f
18 2 f  —f
2=
o o
<22
Q Q
S5
g 3
S =
< 2
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TABLEI
LINK AND STUB TRANSMISSION-LINE INDUCTANCE AND CAPACITANCE
Leg No. Type Inductance Capacitance
1-12 Links ZyAt /2 Y, At /2
13 E, Stub Y, Y, At/2
14 E, Stub Y, Y, At/2
15 E, Stub Y, ¥, At/2
16 H, Stub ZyZ A2
17 H, Stub ZyZ,A1/2
18 H, Stub ZyZ,At/2

Current and voltage conservation, together with the
unitary conditions, has been applied as before. After some
manipulation, the values of the parameters in the scatter-
ing matrix are found to be

-Y VA
a= +
24+Y) 204+ 2)
b 4
2(4+7Y)
-Y VA
c= —
24+Y) 204+ 2)
4 4
24+ 2)
e=b
8 9 10 11 12 13 14 15 16 17 18
y X z y x x y z
x y z z x y oz
b —d c g i
c —d b g —i
¢ ~d g —i
¢ b g i
—d b g —i
—d ¢ g i
d b g 1
a b g —i
a d b g i
d a g -1
b a d g i
b d a g —i
e e h
e e h
e h
—f J
=7 J
o =f J
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f=2zd

g=Yb
(Y-4)

h= (Y +4)

i=d

. (4-2)

J= 4+ 2z)

where Y and Z take a subscript appropriate to the corre-
sponding stub. For example,
-Y, z,

Sp=c= 24+7,) 24+z)

since ports 2 and 9 are both associated with E, and H,.
Note that for Y = Z = 0, the scattering properties of (16)
become the same as (14), as would be expected.

IV. OutpPUT AND EXCITATION

The pulses contributing to the E, field are at ports 1, 2,
9, 12, and 13. From Table I, the capacitance of the
transmission-line legs associated with ports 1, 2, 9, and 12
is Y Az/2, and the capacitance of the transmission-line
stub associated with port 13 is Y, YAt /2.

The total charge injected by voltage pulses incident on
the ports is therefore given by

Y, At

(Vi + Vi + V4V + Y V)

(17)

where V} is the incident voltage pulse on port n.

Conservation of current (or charge) means that the total
charge leaving the ports is also given by (17) and can be
checked by evaluating

Vi+Vyi+Vy+V,+Y. V],
from (16).

Thus, during a whole timestep, the total charge on the
transmission-line legs is

YAt (Vi + Vi + Vi + Vi, + Y V).
The total capacitance modeled by the transmission lines is

Y At
"2 (4+7,).

Thus, the total voltage V, in the x direction at the node is
given by
Ve=2Vi+ 3+ Vs + Vi + Y V5) /(4+Y,). (18)
The E field is therefore
E =2Vi+Vi+Vi+Vh+Y Vi) /u(4+7,).

A similar analysis may be performed for the other
output quantities and the results are

E,=2(V; + Vi + Vi +Vii+ Y Vi) /v(4+7,)
E,=2Vi+Vi+Vi+Vig+YVs)/w(4+Y,)
H, =2V} —Vi+Vi=Vi=Vis)/Zgu(4+ Z,)

375
H,=2~Vi+Vi+Vi-Vio~ Vi) /Zp(4+ Z,)
H,=2(=V; +Vi+V}, =V =Vi)/Zew(4+ Z,). (19)

The total voltages and currents at a node may be excited
by examining combinations of incident pulses which excite
each separate quantity only. Thus, for example, (16) shows
that if unit pulses are incident on ports 1, 2, 9, 12, and 13,
then unit impulses are reflected into these ports and there
are no reflections into any other ports. Thus, the nodal
voltage V, and hence E, are exciled, and from (18) the
value of V_ is 2. It can be deduced, therefore, that if the
separate field components of E and H are to be excited,
one possible set of incident pulses is given by

Vi=(uE +wZ,H,)/2
Vi=(uE,—vZH,)/2
V31 = (UE}, - WZOHZ)/2
Vi=(vE,+uZ,H,)/2
Vi=(wE, - uZ,H,)/2
Vi=(WE,+vZ,H,)/2
V7' = (WEZ + uZO [I‘c)/2
Vi=(vE,— uZ,H,)/2
Vs = (uE,+vZyH,)/2
Vll() = (WEZ - UZOIiy)/2
Vii=(vE,+wZ,H,)/2
sz = (uEx - WZOHZ)/2

Vis=uE_ /2
Vi,=vE, /2
VllS = WE2/2

Vie= - Z,ZyuH, /2

Vi=~Z,ZwH, /2

Viy=—Z.ZywH, /2.

For example, if only the field F, =1 is excited, then the
following incident pulses are required:
Vi=u/2 Vi=u/2 Vi=u/2

h=u/2 Vii=u/2.

V. PROPAGATION PROPERTIES

A full propagation analysis of the symmetrical con-
densed node requires the determinant of the scattering
matrix to be expressed in symbolic form, and this has not
yet been done. However, it is possible to make some
simple observations for plane-wave propagation in two
directions for the node without stubs.

Consider a y-polarized plane wave traveling in the posi-
tive x direction with unit pulses incident on port 3 of
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nodes in a given y-z plane, ie.,
Vi=1
Vi=0

From (14), the reflected pulses are
W=Vi=V{=-Vh=3
V,=0

n

n#3.

for all other n.

Thus, there is no energy reflected into the backward direc-
tion (port 3) or transmitted into the forward direction
(port 11).

However, similar excitations on neighboring nodes
clearly give the following incident pulses at the next time-
step:

Vi=Wi=—-Vi=Vh=}

V,=0 for all other n.
Equation (14) now gives the reflected pulses as
Vi=
Vi=0 n+11.

Thus, all of the energy entering a cube of space at port 3
exits the cube at port 11 after two timesteps. This means
that the velocity of waves on the transmission-line struc-
ture is half the velocity of pulses on the individual
transmission lines. This is to be expected since C, in (3)
and L, in (7) are given by

C,.=2C,Al

L =2L,Al

where C, and L, are the capacitance and inductance per
unit length of the four link transmission lines of a cube
u=v=w=A/ The velocity of low-frequency bulk waves
on the expanded-node mesh is also half of the pulse
velocity. The remarkable fact for the symmetrical con-
densed node with no stubs is that the velocity is constant
for alt frequencies and there is no cutoff of the waves in
this direction. This should be compared with the cutoff
value of Al/A=1/3 for along-axis propagation for the
expanded-node mesh [15].

It is also possible to study a p-polarized plane wave
traveling at 45° to the x and z axes by considering pulses
entering ports 3 and 4 simultaneously. Thus,

vi=vi=1
Vi=0

This time, (14) gives

for all other n.

1
V=V =Vi=V{=—Vi=V{=Vi=~Vj=>.

The mesh is now behaving like two independent two-
dimensional series node meshes. Propagation analysis for
this structure shows that the velocity of bulk waves at low
frequencies on this structure is 1/ V2 times that of free
space [15]. Bearing in mind that the distance in three
dimensions is 1 / V2 times greater at 45°, the low-frequency

effective velocity on the three-dimensional structure is
again 1/2. The cutoff frequency for the structure is A//A
=1/2, which is the same as for the expanded-node mesh
for propagation in this direction [15].

Thus, for these two directions of propagation, it can be
concluded that at 45° the dispersion in the symmetrical
condensed-node mesh is the same as that in the expanded-
node mesh, whereas at 0°, where dispersion is at its worst
in the expanded-node mesh, there is no dispersion at all in
the symmetrical-condensed-node mesh.

VI. CONCLUDING REMARKS

The symmetrical condensed node has been in use for
some time now and has received extensive and exhaustive
tests. The results in [16] confirm that the new node is more
accurate than both the expanded-node mesh and the sym-
metrical-node mesh. The new mesh is easier to use and has
already been connected to three-dimensional graphics
modeling packages for automatic data preparation. It has
also proved to be much easier to use in conjunction with
diakoptics using space and time approximations [17].

The relationship between the expanded-node mesh and
the finite-difference method has been examined in some
detail [18], and under certain circumstances it is possible
for the two methods to be equivalent. Any equivalence
between the symmetrical-condensed-node mesh and a
finite-difference routine is not immediately obvious, how-
ever, and must therefore be the subject of further study.

ACKNOWLEDGMENT

Symmetrical condensed nodes were a topic of much
discussion between the author and Prof. R. L. Beurle of
the Department of Electrical and Electronic Engineering,
University of Nottingham, in 1974 and 1975. This contri-
bution and notes written by Prof. Beurle at that time are
gratefully acknowledged.

REFERENCES

[1] P. B. Johns, “The art of modeling,” IEE Trans. Electron. Power,
vol. 25, no. 8, pp. 565-569, Aug. 1979.

[21 W. I. R. Hoefer, “The transmission-line matrix method—Theory
and applications,” IEEE Trans. Microwave Theory Tech., vol.
MTT-33, pp. 882-893, Oct. 1985.

{31 S. Akhtarzad and P. B. Johns, “The solution of Maxwell’s equa-
tions in three space dimensions and time by the TLM method of
numerical analysis,” Proc. Inst. Elec. Eng., vol. 122, no. 12, pp.
1344-1348, Dec. 1975,

[4] P. B. Johns and G. Butler, “The consistency and accuracy of the
TLM method for diffusion and its relationship to existing methods,”
Int. J. Num. Methods Eng., vol. 19, pp. 1549-1554, 1983.

[5]1 K. S. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans.
Antennas Propagat., vol. AP-14, no. 3, pp. 302-307, May 1966.

[6] A. Taflove and M. E. Brodwin, “Numerical solution of steady-state
electromagnetic scattering problems using the time-dependent
Maxwell’s equations,” IEEE Trans. Microwave Theory Tech., vol,
MTT-23, pp. 623-630, Aug. 1975.

[7]1 P. B. Johns, and K. Akhtarzad, “The use of time domain diakoptics
in time discrete models of fields,” Int. J. Num. Methods Eng., vol.
17, pp. 1-14, 1981.

[8] P. B. Johns and K. Akhtarzad, “Time domain approximations in
the solution of fields by time domain diakoptics,” Int. J, Num.
Methods Eng., vol. 18, pp. 1361-1373, 1982.

[9] P. B. Johns, and Y. Rahhal, “The use of diakoptics for the
numerical simulation of the penetration of time domain fields in



JOHNS: SYMMETRICAL CONDENSED NODE FOR TLM METHOD

{10]

1]

(12]

[13]

{14].

(15]

(6]

[17]

(18]

aircraft,” in Int. Conf. Electromagnetic Compatibility (Umvers1ty of

Surrey), IERE Publication No. 56, Sept. 21-23, 1982.

P. Saguet and E. Pic, “Ultilisation d’un nouveau type de noeud dans

la method TLM en 3 dimensions,” Electron. Lett., vol. 18, no. 11,

pp. 478-480, May 1982.

P. Saguet, and S. Tedjini, “Method des lignes de transmission en

trois dimensions: modification du processus de simulation,” Ann.

Telecommun., vol. 40, nos. 3-4, pp. 1-8, Mar.—Apr. 1985.

A. Amer, “The condensed node TLM method and its application

to transmission in power system,” Ph.D. thesis, Nottingham Uni-

versity, 1980.

P. B. Johns, “Ideal transformers and guage transformations in

tumped network models of electromagnetic fields,” Proc. Inst. Elec.

Eng., vol. 129, pt. A, no. 6, Aug. 1982.

R. E. Collin, Foundations for Microwave Engineering. -New York:

McGraw Hill, 1966.

C. R. Brewitt-Taylor and P. B. Johns, “On the construction and

numerical solution of transmission-line and lumped network mod-

els of Maxwell’s equations,” Int. J. Num. Methods Eng., vol. 15,
pp. 13-30, 1980.

R. Allen, A. Mallik, and P. B. Johns, “Numerical results for the

symmetrical condensed TLM node,” pp. 378-382, this issue.

P. B. Johns and A. Mallik, “EMP response of aircraft structures

using TLM,” presented at 6th Symp. Tech. Exhibition Electromag-

netic Compatibility, Zurich, March 5-7, 1985,

P. B. Johns, “On the relationship between TLM and finite-

difference methods for Maxwell’s equations,” IEEE Trans. Mzcro-

wave Theory Tech., vol. MTT-35, pp. 60-61, Jan. 1987.

377

Peter B. Johns was born in Newport, Wales, in .
1938. He ‘received the B.Sc. (eng.) degree in
electrical engineering and the M.Sc. degree in
physics from London University, England,
in 1964 and 1966, respectively, and the Ph.D.
degree from Nottmgham University, England in
1973.

From 1964 to 1967, he was with British Tele-
com Research Laboratories at Dollis Hill,
London, where he worked on interference prob-
lems associated with satellite communication sys-
tems. In 1967, he was appomted Lecturer in the Department of Electrical
and Electronic Engineering, University of Nottingham, and he is now
Professor of Information Systems and Head of Department. He was a
visiting Research Associate at the University of Manitcba in 1975 /76.

Dr. Johns has originated and developed the modeling procedure TLM

- for computer simulation of electromagnetic waves, diffusion processes,

and network analysis. He has published many papers on the subject, and
in 1976 he won the Electronics Division Premium of the Institution of
Electrical Engineers. He is Managing Director of a small company set up
in Nottingham to provide a numerical modeling service for industry. The
electromagnetic applications of TLM presently include the areas of
EMP/EMC and microwave tube design.




