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A Symmetrical Condensed Node for the
TLM Method

PETER B. JOHNS

Abstract —A new symmetrical condensed node is developed for the
analysis of electromagnetic waves by the transmission-line modeling (TLM)
method of numerical analysis.The new node has the advantage of con-

densing the field components to one point in space at the node and
removes the disadvantage of asymmetry in existing condensed nodes.

I. INTRODUCTION

T RANSMISSION-LINE MODELING (TLM) pro-

vides a conceptual model which produces a time-

domain numerical technique for solving networks and

fields [1]. Electromagnetic fields are modeled by filling the

field space with a network of transmission lines which

renders the problem discrete in space and time since pulses

launched on the network scatter from point to point in

space in a fixed timestep. The theory and application of

TLM for electromagnetic simulation are reviewed in an

excellent paper by Hoefer [2], who also describes some of

the later developments.

The network of transmission lines shown in Fig. 1 for

modeling three-dimensional electromagnetic waves has

been developed by interconnecting two-dimensional shunt

and series nodes [3]. There is half a timestep delay between

these nodes, and for this reason the network is termed an

expanded-node network.

The expanded-node network has been used for a variety

of applications over many years [2]; it is similar to finite-

difference methods in the same way that the TLM method

in its application to diffusion is similar to finite differences

[4]. A numerical advantage of TLM over the method of

Yee [5], for example, is that three of the six field compo-

nents are available at each node (rather than one), thus

making boundary description finer and giving more infor-

mation at each node. Also, TLM is a one-step method,

whereas the finite-difference routine is a two-step method.

Conceptually, TLM has the advantage that it is a physical

model with an exact computer solution.

The outstanding disadvantage of the expanded-node
network and the finite-difference method is that the topol-

ogy of the network graph is quite complicated. The nodes,

where different field components are conveniently calcu-

lated, are spatially separated. In the finite-difference

method, for example, all six field components are sep-

arated [6]. This has made data preparation for the mod-
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cling of boundaries clifficult and liable to error, and the

problem is particularly acute when automatic data prep.

aration schemes are implemented. The process of di-

akoptics for forming substructures [7], [8] is also difficult

to organize because c)f the half-timesteps and the spatial

separation of different polarizations [9].

This inconvenience of the expanded node network has

led to the development of a condensed-node structure by

Saguet and Pic [10]; this and other improvements in TLM

are described in an interesting paper by Saguet and Tedjini

[11]. The condensed node has also been evaluated and used

independently by Amer [12]. The node is shown in Fig. 2,

and it can be seen that the network topology is simply a

three-dimensional Cartesian mesh with two lines, corre-

sponding to two polarizations, in each branch. All of the

scattering processes take place at one point in space for the

node, all of the field (components are also at one point in

space, and boundary conditions can be applied at the node

or halfway between nodes. However, it can also be seen

from Fig. 2 that the node is asymmetrical because, depend-

ing upon the direction of view, the first connection in the

node is either shunt (or series. This asymmetry has been

carefully investigated lby Amer [12], and it has been found

that in most problems the errors are insignificant. Never-

theless, it does mean that boundaries viewed in one direc-

tion have slightly different properties when viewed in

another, especially at high frequencies. The scattering pro-

cess for this node is obtained in the computer by first

calculating the six nodal quantities from the 12 incident

pulses and then calculating the 12 reflected pulses. Al-

though this procedure makes the scattering computation

efficient, it does involve quite lengthy arithmetic. Never-

theless, in spite of these disadvantages, it has been demon-

strated [10]–[12] that the asymmetrical condensed-node

technique uses less computer resources than the

expanded-node technic[ue.
This paper takes yet another step and describes the

development of a symmetrical condensed node for trans-

mission-line modeling of electromagnetic waves. This node

eliminates the disadva.ntages of asymmetry and cumber-

some arithmetic in the asymmetrical node while preserving

the advantages of condensed-node working.

In this paper, a condensed node without stubs is first

considered. The absence of stubs means that extra induc-

tance and capacitance cannot be added locally to the node

and so the node represents only a cubic block of homoge-

neous space in a Cartesian mesh. The paper then gives the
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Fig, 1. Theexpanded node.

scattering mat~ for the node with stubs. This allows the

node to be used in inhomogeneous problems and in prob-

lems described by a completely general orthogonal mesh.

The output and excitation properties of the node with

stubs are considered and a simple propagation analysis is

given for waves propagating in two different directions.

II. THE SYMMETRICAL CONDENSED NODE

WITHOUT STUBS

Hitherto, the method for obtaining the scattering matrix

for a node in a transmission-line graph has been to repre-

sent the node by an equivalent electrical circuit obtained

by replacing transmission-line and incident pulses by

Thevenin equivalent circuits. In developing the symmWi-

cal condensed node, it is necessary to make a break with

this tradition since the node can no longer be represented

by a lumped circuit.

The proposed node without stubs is depicted in Fig. 3. It

is convenient to preserve the idea of two-wire transmission

lines, and these are shown for convenience on the sides of

what can be imagined as square ducts made of insulating

material. The two polarizations in any direction of propa-

gation are carried on two pairs of transmission lines which

do not couple with each other. In the expanded mesh,

these two transmission lines are totally separated in space.

The 12 transmission. lines all have the same characteris-

tic impedance, which also equals the characteristic imped-

ance of free space, ZO. These lines link the Cartesian mesh

of nodes together and are termed link transmission lines.

Twelve pulses on the link transmission lines, incident upon

the node, produce scattering into 12 reflected pulses. The

incident and reflected pulses appear on the terminals of

the transmission lines at ports which are numbered and

directed according to the voltages shown in Fig. 3.

Let the scattering be defined by

Vr=~V’

Fig. 2. The asymmetrical condensed node.
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Fig. 3. The symmetrical condensed node.
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where S is a 12X 12 matrix with elements Sm. in the m th

row and n th column.

Suppose that a voltage pulse V; of unit amplitude is

incident upon port 1 of the structure in Fig. 3. The pulse

proceeding toward the junction has associated with it the

field quantities EX and HZ. One of Maxwell’s equations

involving coupling between these two fields is

dHZ i?Hy dEX
—. ——
ay az “ at -

(1)

This equation requires that the pulse incident on port 1

scatter into ports 1, 2, 9, and 12 since EX and H= are also

associated with port 12 on a y-directed line, and EX and

HY are associated with ports 2 and 9 on z-directed lines.

Let the amplitudes of the pulses scattered into ports 1 and

12 be a and c, respectively. If a symmetrical node exists,

then the pulses scattered into ports 2 and 9 must be equal,

and the variable b is assigned to these.

The other equation of Maxwell’s involving EX and H= is

aEv aEx aHz

ax–ay=–p at”
(2)

This means that pulses are also scattered into ports 3

and 11, and if the symmetrical node exists, these will be

equal and opposite in sign. The variable d is assigned to

the pulse scattered into port 3 and – d to the one into

port 11.

If the same procedure is applied to all ports, then the

scattering matrix S may be written as

rabdooo

s=

T
v

1
l-–---l I

)-’--
y’
L

Fig. 4. Representation of space by the condensed node.

in the x direction. lY and 1= are currents circulating in

transmission lines in the y and z directions, respectively,

and are mesh currents or common currents [13].

Let 11, 12, 19, and lIZ be the currents entering ports 1,

2, 9, and 12, respectively. Then the discrete form of (1)

becomes

Ilz + II Ig + Iz Cxu a Vx
—+—=———

WV Wv WV at u

O 0 b O–d C

b a O 0 0 d O 0 c--d O b
dOab OOOb 00 –d
O 0 b a d O–d 00;0
000 dab –; ObOO
OdOOba~ O–d 00
000–d bad O~OO
00b –~Oda OOb O
b o ~O–d 00 adO b
o –: O 0 b bOd 00

–d O bO; ObO ~ad
c b –~OOOOOb Oda.

and the problem now is to determine the values of a, b, c, i.e.,

and d.
Let the node represent a block of space of dimensions u, a Vx

u, and w, as shown in Fig. 4 and let the total capacitance 112+ 11+19 +12= cx——
at -

(5)

associated with transmission lines 1, 2, 9, and 12 be CX,

where
Equation (5) indicates that the only loss of current

CX=Y. (3)
entering the four ports must be due to the rate of change

u of voltage across the capacitance of the transmission lines

Let the fields associated with these lines be and there must be no loss of current at the node.

EX=VX/u
The scattering matrix could be expressed in terms of

HY = 1,/u

HZ= – 1,/W

where Vx is the voltage drop across

voltages, currents, field quantities, o; a combination of

these. Historically, the voltage has been used, and it is

(4)
convenient to continue with this convention. Thus, in

terms of voltage pulses on link lines of equal characteristic

the transmission lines impedance, the conservation of current at the node re-
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quires that

l–a=2b+c. (6)

Referring again to Figs. 3 and 4, the inductance associ-

ated with transmission lines 1, 3, 11, and 12 is LZ, where

and the associated fields are

EX = V./u

EY = VY/u

and

H,= IZ/w.

(7)

1

1

s=;

1
—

–1

1

1

-1

l–

1

1

1

1

1

1

–1

1

1

1

–1

1

Here, 1= is the mesh current or common current associated

with the four transmission lines. Note that the method of

solution of the transmission-line structure uses pulses, this

forces the currents on each of the two individual wires of

each transmission line to be equal and opposite, which

automatically sets to zero the type-W mesh currents dis-

cussed in [13].

Let J’l, V3, Vll, and VIZ be the voltages across ports 1, 3,

11, and 12, respectively. Then the discrete form of (2) is

VII-V, (v12-vJ=_L w a 1.
—

Uv Uv ‘Uv al w

i.e.,

dI~
Vq+ VIZ–VII– Vl= L=—

dt “
(8)

Equation (8) indicates that the only loss of voltage

across the four ports must be due to the rate of change of

current in the inductance of the transmission lines and

there must be no loss of voltage at the node. Thus,

l+a=2d+c. (9)

For loss-free propagation of waves, the node must con-

serve energy under all combinations of incident pulse

excitation, and this leads to the requirement that the

scattering matrix be a unitary matrix [14], i.e.,

S=S=l.

Thus,

and

which gives the following equations:

a2+2b2+c2+2d2=l (lo)

2ab+2bc=0 (11)

2ad –2cd = O (12)

2ac+2b2–2d2=0. (13)

It is interesting to find that (10)--(13) do have a solution

and this solution also satisfies (6)--(9). It is

U=O c=O b=+ d=$

The scattering matrix becomes

1 –1 -

1 .- 1 1

1 -. 1

–1 1,

1 –1 1

1 –1

1 1 1

1 1

1 1 1

1 1

1 1

1 1

(14)

which is a remarkably simple and satisfying result.

III. THE SYMMETRICAL CONDENSED NODE WITH STUBS

The node with stubs has six extra ports. Ports 1–12 are

exactly the same as for the node vvithout stubs and are

connected ,to neighboring nodes to form the mesh. The

stub ports 13, 14, 15, 16, 17, and 18 couple only with the

fields EX, EY, EZ, HX, HY, and Hz, respectively. The

E-field stub ports are open circuit and add capacitance to

the node, while the H-field stub ports are short circuit and

add inductance to the node. The time taken for a pulse to

travel from the port terminals to the center of the node

where scattering takes place is At/2 for all transmission-

line legs 1–18, where At is the TLM timestep.

Let YX be the characteristic admittance of the EX stub

normalized to the characteristic admittance of free space

(Yo). Let Ld and Cd be the distributed inductance and

capacitance (i.e., the inductance and capacitance of the

stub per unit length) and let the length of the stub be

A1/2. The capacitance of the EX stub is then given by

At
C,x = cd; = c~-–=== .

2JJ060

Also,

cd= Yx(o
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C,x = YOYX; . (15)

A similar analysis can be made for all of the transmis-

sion-line legs and the results are summarized in Table I.
The scattering matrix is found by extension of the

principles of the previous section. Since, by definition, the

voltage pulse incident on port 13 only couples with the EX
field, it will scatter into ports 1, 2, 9, and 12. This ampli-

tude is taken to be e, and the amplitude scattered back

into itself is taken to be h. Also, pulses incident on ports 1,

2, 9, and 12 will couple into port 13, and this amplitude is

taken to be g. All these variables will be associated with

YX, the characteristic admittance of the EX stub on port 13.

Pulses incident on ports 3, 4, 8, 11, and 14 will have similm

variables associated with YY, and pulses incident on ports

5, 6, 7, 10, and 15 are associated with Y=. Similar argu-

ments apply to the inductance stubs on ports 16, 17, and

18.

The scattering equation

~“=~~1 (16)

for the node with stubs now contains an 18X 18 scattering

matrix which takes the following form. The association of

the rows and columns with the particular Y and Z param-

eters is indicated,

Column No.
Associated s/c Stub
Associated o/c Stub

1

2

3
4
5
6
7
8

9
10
11
12

13

14
15
16
17
18

(Y)

(z)
Xz

XY
y z

yx

Zx

ZY
Zx

yx

~Y

ZY
yz

Xz

x

Y
z

x

Y
z

1234

Xxyy

ZYZ x

abd

ba
dab

ba

d

d

–d

bc

bc

–d

–d c b

cb–d

ee

e e

f

-f

f -f

6
z

Y

d

b
a
b

d

c

e

f

7
z

x

d

;

a

d

b

e

f

TABLE I

LINK AND STUB TRANSMISSION-LINE INDUCTANCE AND CAPACITANCE

Leg No. Tw)e Inductance Capacitance. .
1-12 Links ZO At/2 YOAt/2

13 EX Stub YO~ At/2
14 E, Stub YOYYAt/2
15 E= Stub
16

YO~ At/2
HX Stub ZO ZX At/2

17 HY Stub ZO Z, At/2
18 H, Stub ZO Z, At/2

Current and volta,ge conservation, together with the

unitary conditions, has been applied as before. After some

manipulation, the values of the parameters in the scatter-

ing matrix are found Ito be

–Y z

a=i(4+Y) + 2(4+2)

4
b=-—

2(4+ Y)

–Y z
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8
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c
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f=Zd

g=Yb

(Y-4)

‘= (Y+4)

i=d

(4-z)

‘= (4+Z)

where Y and Z take a subscript appropriate to the corre-

sponding stub. For example,

– Yx Zy
S29=C= 2(4+YX) – 2(4+ z.y)

since ports 2 and 9 are Ooth associated with EX and HY.
Note that for Y= Z = O, the scattering properties of (16)

become the same as (14), as would be expected.

IV. OUTPUT AND EXCITATION

The pulses contributing to the EX field are at ports 1, 2,

9, 12, and 13. From Table I, the capacitance of the

transmission-line legs associated with ports 1, 2, 9, and 12

is YOAt/2, and the capacitance of the transmission-line

stub associated with port 13 is YXYOAt/2.

The total charge injected by voltage pulses incident on

the ports is therefore given by

Q. %(V; + v; + v; + v;, + Yxv{,) (17)

where V~’ is the incident voltage pulse on port n.

Conservation of current (or charge) means that the total

charge leaving the ports is also given by (17) and can be

checked by evaluating

v;+ v;+- V(( + V(2 + Yxv{~

from (16).

Thus, during a whole timestep, the total charge on the

transmission-line legs is

The total capacitance modeled by the transmission lines is

*(4+YX).

Thus, the total voltage VX in the x direction at the node is

given by

Vx = 2(V; + V; + V; + V;z + YxV;~)/(4+ Yx). (18)

The E field is therefore

A similar analysis may be performed for the other

output quantities and the results are

EY=2(V~+ V~+V(+V{l +YYV/A)/U(4+YY)

E==2(P’~+ ~+ Vj+V~O+ YzV~5)/w(4+~)

H,= 2(– V;,+ ~’+ Vi – V~O– V;T)/ZOZJ(4+ 2,)

Hg=2(-V; +V; +V;l– V;2– VJ8)/ZOW(4+ Z=).

375

(19)

The total voltages and currents at a node maybe excited

by examining combinations of incident pulses which excite

each separate quantity only. Thus, for example, (16) shows

that if unit pulses are incident on ports 1, 2, 9, 12, and 13,

then unit impulses are reflected into these ports and there

are no reflections into any other ports. Thus, the nodal

voltage VX and hence EX are excited, and from (18) the

value of V.. is 2. It can be deduced, therefore, that if the

separate field components of E and H are to be excited,

one possible set of incident pulses is given by

V{= ( UEX+ wZOHX)/2

V;= (uEX – oZOHY)/2

V;= ( uE~,– wZOHg)/2

Vi= (uEY + uZOHx)/2

~ = ( WE= – uZ0.HY)/2

v;= (wEZ + UZOHY)/’2

V;= ( WE=+ UZOHx)/2

vf = ( UEY– uZOHx)/2

Vi= (uEX + UZO~v)/2

V~O= ( WEZ- uZOHV)/2

V;l = ( uE, + wZOHz)/2

Viz = ( UEY – wZOHz)/2

V;~ = uEX/2

V:d = vEY/2

V:5 = wEz/2

V/G= - ZXZOuHXf12

V~T= – ZYZOvHY/2A

V~~= – ZZZOwHz/2.

For example, if only the field EX = 1 is excited, then the

following incident pulses are required:

v;= u/2 v;= u/2 v;= u/2 V;2 = u/2 V;3 = u/2.

V, I?ROPAGATION PROPERTIES

A full propagation analysis of the symmetrical con-

densed node requires the determinant of the scattering

matrix to be expressed in symbolic form, and this has not

yet been done. However, h is possible to make some

simple observations for plane-wave propagation in two

directions for the node without stubs.

Consider a y-polarized plane wave traveling in the posi-

tive x direction with unit pulses incident on port 3 of
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nodes in a given y – z plane, i.e.,

V;=l
V;=() n#3.

From (14), the reflected pulses are

vlr=v4r=Kr= -v” =+12

V:=f) for all other n.
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Thus, there is no energy reflected into the backward direc-

tion (port 3) or transmitted into the forward direction

(port 11).

However, similar excitations on neighboring nodes

clearly give the following incident pulses at the next time-

step:

vJ=v; =–v; =v(2=j

V;=f) for all other n.

Equation (14) now gives the reflected pulses as

V{l = 1

V;=f) n+ll.

Thus, all of the energy entering a cube of space at port 3

exits the cube at port 11 after two timesteps. This means

that the velocity of waves on the transmission-line struc-

ture is half the velocity of pulses on the individual

transmission lines, This is to be expected since CX in (3)

and L, in (7) are given by

CX = 2C~Al

L== 2Ld Al

where Cd and L~ are the capacitance and inductance per

unit length of the four link transmission lines of a cube

u = u = w = Al. The velocity of low-frequency bulk waves

on the expanded-node mesh is also half of the pulse

velocity. The remarkable fact for the symmetrical con-

densed node with no stubs is that the velocity is constant

for all frequencies and there is no cutoff of the waves in

this direction. This should be compared with the cutoff

value of A 1/ X =1/3 for along-axis propagation for the

expanded-node mesh [15].

It is also possible to study a y-polarized plane wave

traveling at 45° to the x and z axes by considering pulses

entering ports 3 and 4 simultaneously. Thus,

v;=v~=l

V;=o for all other n.

This time, (14) gives

V;=v; =v; =q=–v; =v; =v{l= –V{*=;.

The mesh is now behaving like two independent two-

dimensional series node meshes. Propagation analysis for

this structure shows that the velocity of bulk waves at low

frequencies on this structure is l/fi times that of free

space [15]. Bearing in mind that the distance in three

dimensions is l/ti times greater at 45°, the low-frequency

effective velocity on the three-dimensional structure is

again 1/2. The cutoff frequency for the structure is A1/A

=1/2, which is the same as for the expanded-node mesh

for propagation in this direction [15].

Thus, for these twc, directions of propagation, it can be

concluded that at 450 the dispersion in the symmetrical

condensed-node mesh is the same as that in the expanded-

node mesh, whereas a.t 0°, where dispersion is at its worst

in the expanded-node mesh, there is no dispersion at all in

the symmetrical-condensed-node mesh.

VI. CONCLUDING REMARKS

The symmetrical condensed node has been in use for

some time now and has received extensive and exhaustive

tests. The results in [16] confirm that the new node is more

accurate than both the expanded-node mesh and the sym-

metrical-node mesh. The new mesh is easier to use and has

already been connected to three-dimensional graphics

modeling packages for automatic data preparation. It has

also proved to be much easier to use in conjunction with

diakoptics using space and time approximations [17].

The relationship between the expanded-node mesh and

the finite-difference method has been examined in some

detail [18], and under certain circumstances it is possible

for the two methods to be equivalent. Any equivalence

between the symmetrical-condensed-node mesh and a

finite-difference routine is not immediately obvious, how-

ever, and must therefore be the subject of further study.
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